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Propagation of Gibbsianness for Infinite-dimensional
Gradient Brownian Diffusions
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We study the (strong-) Gibbsian character on R
Z

d
of the law at time t of an

infinite-dimensional gradient Brownian diffusion, when the initial distribution is
Gibbsian.
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1. INTRODUCTION

Let I be a finite index set (for example a finite subset of some lattice) and
X = (Xi(t), i ∈ I, t ∈ [0, T ]) be an R

I -valued diffusion which is the solution
of the following finite-dimensional stochastic differential equation (s.d.e.)

dXi(t)=dBi(t)− 1
2∇ih(X(t)), dt, i ∈ I, t ∈ [0, T ], (1)

where h is a smooth function from R
I into R and (Bi)i∈I is a sequence of

independent, real-valued Brownian motions. This stochastic dynamics cor-
responds to a perturbation by gradient interactions in the form of drift
terms of a sequence of finitely many Brownian free dynamics at each
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lattice site. Moreover, the stationary measures for (1) are proportional to
the measure

µ(dx)= exp(−h(x))⊗i∈I dxi .

When I is replaced by Z
d and the dynamics (1) is generalised in a

natural way (see (4)), a relevant question is the following: if the initial law
is Gibbsian, is the law of the process X(t) also Gibbsian at any time t >0,
in other words

does the Gibbsianness property propagate?

In fact, even if the initial distribution is locally absolutely continuous, the
law of X(t) for a time t > 0 can be much less regular in the sense that
the sum of the interactions between the (infinitely many) components can
explode. So, to obtain a positive answer to the above question, we restrict
our study to two particular regimes which can be better controlled. In Sec-
tion 3, we present the propagation of Gibbsianness if the time t is short
enough, and in Section 4, we analyse for arbitrary times the case of small
interactions between the coordinates for a strongly unique initial Gibbsian
condition, in other words high-temperature evolution and high-tempera-
ture initial Gibbs measure.

These results were announced in ref. 4. We were inspired by the nice
work of van Enter, Fernandez, den Hollander and Redig, who consider in
ref. 8 the question of possible loss and recovery of Gibbsianness in the
context of Interacting Particle Systems with values in {−1,+1}Z

d
which

follow a high-temperature Glauber dynamics. They treat several cases and
can exhibit situations where the process at time t is strong Gibbsian (in a
sense to be defined below), and other situations where it is not. See also
ref. 19 for related results for Kawasaki dynamics. Unfortunately, since our
state space R

Z
d

is unbounded, we cannot use all the criteria they have
at their disposition (in particular, the criterion of non-Gibbsianness con-
tained in ref. 11) to test the Gibbsianness/non-Gibbsianness of νt. So our
present results only concern situations for which the Gibbsianness is con-
served. We hope to extend them soon to some non-Gibbsian example.

To our knowledge our paper and the recent results presented in ref.
18 are the only ones related to the propagation of Gibbsianness under
a stochastic evolution like a diffusion with values in a continuous space
(the state space is the infinite-dimensional vector space R

Z
d
). In ref. 18 the

authors allow unbounded interactions but are then obliged to introduce a
somewhat weaker notion of Gibbsianness.
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2. GIBBS MEASURES AND INFINITE-DIMENSIONAL GRADIENT

DIFFUSIONS: THE FRAMEWORK OF OUR STUDY

Let us first introduce some definitions and notations.
An interaction potential—or interaction—φ on R

Z
d

is a collection of
functions φ� from R

Z
d

into R ∪{+∞} where � varies in the set of finite
subsets of Z

d . Each φ� is supposed to be measurable with respect to F�,
the σ -algebra generated by the canonical projection on R

�; that is for any
x ∈R

Z
d
,

φ�(x)=φ�(x�)

where x� is the projection on R
� of x.

The interaction φ is said to be of finite range if it satisfies:

(FR) ∃r >0, diameter �>r �⇒φ� ≡0

The interaction φ is said to be regular bounded if it satisfies:

(RB) ∀�, φ� is C2, bounded with bounded derivatives.

The interaction φ is said to be absolutely summable if it satisfies:

(AS) ∀i ∈Z
d ,
∑

��i
‖φ�‖∞ =

∑
��i

sup
x∈RZd |φ�(x)|<+∞

Remark that absolute summability for unbounded spins is a rather strong
condition, which is chosen here for technical convenience.
When an interaction φ is (AS) one can define the collection hφ = (h

φ
�)�⊂Zd

of associated Hamiltonian functions on R
Z

d
by

h
φ
� =

∑

�′:�′∩��=∅
φ�′ . (2)

More generally, we note for x, y ∈R
Z

d
and �,�⊂Z

d

h
φ
�,�(x, y)=

∑

�′:�′∩��=∅
�′⊂�∪�

φ�′(x�y�\�),
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where x�y�\� is the element in R
Z

d
equal to x on �, y on �\� and 0

outside of �∪�. For example, h
φ

�,Zd (x, x) coincides with h
φ
�(x). Further-

more, h
φ

�,∅(x) =∑
�′⊂� φ�′(x�′) is a function of x�. To recall this prop-

erty, we will sometimes denote it by h
φ

�,∅(x�).
In fact, as soon as the series on the right-hand side of (2) converges

pointwise, one can define a Hamiltonian function associated to a (possibly
non absolutely) summable interaction. To simplify we will always denote
by h

φ
i the function h

φ
{i} (i ∈Z

d ), by h
φ
�,�(x) the function h

φ
�,�(x, x) (�,�∈

Z
d , x ∈R

Z
d
).

We call ρ a Gibbsian measure on R
Z

d
associated to the reference measure

m and to an interaction φ for which the series (2) converges if it satisfies
the system of Dobrushin-Lanford-Ruelle (DLR) equations:

ρ(dxi/xj , j �= i)= 1
zi

exp−(hφ
i (x)

)
m(dxi), i ∈Z

d .

The set of such measures will be denoted by G(φ,m). (For general
references on Gibbs measures, see refs. 13 and 24.)

The measure ρ will be called strong Gibbsian if the associated inter-
action is absolutely summable, i.e. satisfies (AS).

Let ϕ be a so-called dynamical interaction on R
Z

d
, having a C2-regu-

larity and satisfying (FR). The associated hamilton function h
ϕ
i , denoted

by hi to simplify, is also C2. We can now consider the following infinite-
dimensional system given by:

{
dXi(t)=dBi(t)− 1

2∇ihi(X(t)) dt, i ∈Z
d , t ∈ [0, T ],

X(0)�ν
(3)

where ν is a probability measure on R
Z

d
. We will become more precise

in Section 3 (resp. Section 4) about the exact assumptions on h and ν

we take to assure that the infinite-dimensional stochastic system (3) has
a unique strong Markovian solution X with values in the infinite prod-
uct of continuous trajectories �T = C([0, T ],R)Z

d
. Deuschel described in

(refs. 5 and 6) the Gibbsian structure on the path space �T of the law
Qν , when the initial distribution ν itself is Gibbsian (associated to an ini-
tial interaction ϕ̃). Later, this result was completed and generalised in ref.
2, by showing a bijection between the set of Gibbs measures associated to
the initial interaction ϕ̃ on R

Z
d

and a set of Gibbs measures on the path
space �T describing the full dynamics. Having a Gibbs representation of
Qν on the path level (even a strong Gibbsian one, see ref. 4, Corollary 2),
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we would like to know if at each time t , the law νt of X(t), a probabil-
ity measure on R

Z
d
, remains strong Gibbsian. Clearly, νt is the projection

at time t of Qν , but projections are maps which do not conserve a priori
the Gibbsianness (see the famous examples of ref. 9, and also refs. 10 and
11 among others). In ref. 2 it was remarked that, projecting at time 0 a
general strong Gibbs measure on the path space, the image measure which
is obtained on the state space preserves a Gibbsian form in the following
weak sense: it is associated to a modification (cf. ref. 13, Section 1.3, for
the exact definition), roughly speaking to a family of compatible local den-
sities with respect to a reference measure. But the regularity of the density
and the existence of an underlying nice interaction potential is completely
unclear. In the Remarks after Proposition 2.5 in ref. 2, a reference to the
work of Kozlov was given to clarify this question. The object of this paper
is to present a positive answer for the projection at time t >0.

The challenge is to control the evolution of an initial absolutely sum-
mable interaction ϕ̃ under the dynamics (3). It is clear that, even if ϕ̃

is of finite range this property immediately disappears for any time t > 0
since the interacting diffusion carries instantaneously information between
all the coordinates. Moreover, to assure that at time t , the process is still
Gibbsian and associated to a “good” interaction, i.e. an absolutely sum-
mable one, we are obliged to restrict our study to two cases; first for small
times t , which implies that the process stays close to the initial Gibbsian
condition. Secondly, for small dynamical interaction ϕ between the coor-
dinates, which assures that the sum of the initial interaction and the inter-
action induced by the dynamics does not explode.

3. PROPAGATION OF GIBBSIANNESS DURING A SHORT

STOCHASTIC DIFFUSIVE EVOLUTION

Let us consider the infinite-dimensional gradient system (3) intro-
duced in Section 2 where the initial distribution is Gibbsian. We have the
following result.

Theorem 1. Let Qν be the law on � = C(R+,R)Z
d

of the infinite-
dimensional diffusion solution of

{
dXi(t)=dBi(t)− 1

2∇ihi(X(t)) dt, i ∈Z
d , t >0,

X(0)�ν
(4)

where ν ∈ G(ϕ̃, dx) with support included in l1(γ ), with γ = (e−α|i|)i∈Zd ,
α >0. Let us moreover suppose that
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(i) the initial interaction ϕ̃ is of finite range (FR) and each ϕ̃� is
Lipschitz continuous (uniformly in �)

(ii) the dynamical interaction ϕ is of finite range (FR), and each ϕ�

is C2 with bounded derivatives of order 1 and 2 (uniformly in �).

Then, there exists a time t0 >0 depending only on ϕ̃ and ϕ such that, for
any t � t0,

{νt =Qν ◦X(t)−1 :ν ∈G(ϕ̃, dx)}⊂G(ϕt , dx)

where ϕt is an absolutely summable (AS) interaction depending only on
the initial and dynamical interactions ϕ̃ and ϕ.

Remark 1. One can make explicit some additional assumptions on
ϕ̃ in order to assure that G(ϕ̃, dx) contains at least one measure with sup-
port included in l1(γ ). For example suppose there exists a > 0, b � 0 such
that for each i ∈Z

d

(i) ∀x ∈R, x∇i ϕ̃i (x)�a|x|−b

(ii) a >
∑

��i
#�>1

‖∇i ϕ̃�‖∞.

Then there exists ν ∈G(ϕ̃, dx) satisfying
∫ ‖x‖γ ν(dx)<+∞ where ‖x‖γ =:∑

i∈Zd |xi |e−α|i|. This obviously implies that ν{x :‖x‖γ <+∞}=1.

As example, the following concrete pair interaction ϕ̃ satisfies con-
ditions (i) and (ii): take as self-interaction ϕ̃i for each site i the same
C1-regularization around 0 of the function x �→ a|x|, and as finite range
pair interaction ϕ̃{i,j} any C1 function on R

2 with small enough bounded
derivatives.

The proof of Remark 1 is postponed to the end of the section.

Proof of Theorem 1. The proof is based on an approximation of νt

by a sequence of probability measures νt
�, which are the laws at time t of

finite-dimensional systems. It will be relatively easy to obtain a Gibbs rep-
resentation for each νt

�. But the delicate point will be the convergence of
their associated Hamiltonian functions towards a limiting function, which
will be a good candidate as Hamiltonian function associated to νt.

Let us first recall a representation theorem, which we will use for the
initial Gibbs measure ν (Theorems 7.12 and 7.26 in ref. 13).
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Lemma 1. The probability measure ν, like every element of G(ϕ̃, dx),
is a mixture of elements of ex G(ϕ̃, dx), where ex G(ϕ̃, dx) is the set
of extremal Gibbs measures µ which are characterized by the following
property: there exists y ∈R

Z
d

such that

µ= lim
�↗Zd

µ�,y ⊗ δy�c where µ�,y(dx�)= 1

Z̃�,y

e−h̃�,�c (x,y)dx�. (5)

The family of µ�,y is in fact the family of finite-volume specifications with
fixed boundary condition y.

The limit in the above Lemma is taken in the following sense: for any
increasing sequence �n of finite subsets in Z

d converging to Z
d when n

goes to infinity, µ�n,y ⊗ δy�c
n

converges in the local convergence topology
towards µ.

We first prove the theorem in the case where ν ∈ exG(ϕ̃, dx).
Let (ν�,y)�⊂Zd be the approximating sequence of ν defined by (5). For
�⊂Z

d fixed and any i ∈�, we introduce the i-decoupled infinite measure
νi
�,y as follows:

νi
�,y(dx�)= 1

Z̃�,y

e−h̃�\i,�c (x,y)dx�\idxi .

Since h̃�,�c (x, y)= h̃�\i,�c (x, y)+ h̃i (x�y�c), we obtain

νi
�,y(dx�)= eh̃i (x�y�c ) ν�,y(dx�). (6)

Let us remark that νi
�,y ⊗ δy�c converges in � towards a measure νi on

R
Z

d
which is absolutely continuous with respect to ν and satisfies:

νi(dx)= eh̃i (x) ν(dx).

In the same way, we denote by µ� and µi
� the following measures (not

necessary finite):

µ�(dx�)= e−h�,∅(x�) dx�, µi
�(dx�)= e−h�\i,∅(x�\i ) dx�\idxi . (7)

Then

µi
�(dx�)= ehi,�(x�) µ�(dx�). (8)
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Let us now introduce the following finite-dimensional approximation of
the dynamics (4):

dXi(t)=dBi(t)− 1
2∇ihi,�(X�(t))dt, ∀i ∈�, t >0. (9)

Remark that we also could write the drift as − 1
2∇ih�,∅(X�(t)). Under this

form, µ� is clearly a reversible measure associated to this dynamics.
We denote by Q

x�

� the law on C(R+,R)� of the solution of (9) when
the initial condition is x� ∈R

�.
We now introduce, in the same way as above, some decoupled

(infinite- and finite-dimensional) dynamics at the site i:

{
dXj (t)=dBj (t)− 1

2∇j hj,Zd\i (X(t))dt, ∀j ∈Z
d\{i}, t >0

dXi(t)=dBi(t), t >0.
(10)

Qx,i denotes the law of the solution of (10) with deterministic initial con-
dition x ∈R

Z
d
. These dynamics are useful since they are simpler than the

undecoupled ones, and we will prove that the law νt of the gradient sys-
tem at time t is absolutely continuous with respect to the law at time t of
the above decoupled system.

We also consider the finite-dimensional approximation of (10):

{
dXj (t)=dBj (t)− 1

2∇j hj,�\i (X�\i (t))dt, ∀j ∈�\i, t >0
dXi(t)=dBi(t).

(11)

We denote by Q
x�,i
� the law on C(R+,R)� of the solution of (11) when

the initial condition is x� ∈ R
�. µi

� is a reversible measure associated to
this dynamics.

Since the solution of (4) (when it exists) is Markovian, one has: Qν =∫
Qx ν(dx). More generally, for any measure µ, we denote by Qµ (resp.

Qµ,i,Q
µ
� or Q

µ,i
� ) the mixture of Qx under µ: Qµ = ∫

Qx µ(dx) (resp.∫
Qx,i µ(dx),

∫
Qx

� µ(dx) or
∫

Q
x,i
� µ(dx)).

We also define the projections at time t of these measures:

νt =Qν ◦X(t)−1, νt,i =Qνi,i ◦X(t)−1, νt
�,y = Q

ν�,y

� ◦X(t)−1,

ν
t,i
�,y = Q

νi
�,y ,i

� ◦X(t)−1.
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Lemma 2. For each t > 0 and i ∈ Z
d , the following weak conver-

gences hold:

lim
�↗Zd

νt
�,y =νt and lim

�↗Zd
ν

t,i
�,y =νt,i .

Proof. We only prove the first convergence. The proof of the second
one is analogous.

Under the assumptions satisfied by ϕ in Theorem 1, it is simple to
verify that for any initial deterministic condition x ∈ l1(γ )={y = (yi)i∈Zd ∈
R

Z
d

: ‖y‖γ < +∞}, a strong solution of (4) exists in C(R+, l1(γ )). It is
obtained as limit of finite-dimensional diffusions solution of (9). More pre-
cisely, let �n be an increasing sequence of finite subsets in Z

d converging
to Z

d when n goes to infinity. To clarify the notations, instead of using the
canonical processes, for x ∈R

Z
d

we denote by Xx the solution of (4) with
ν = δx and by X(n),x the (infinite-dimensional) process with initial condi-
tion x whose restriction on �n solves (9) with �=�n and whose coordi-
nates outside �n are frozen in x�c

n
. So the law of Xx is equal to Qx and

the law of X(n),x is equal to Q
x�n

�n
⊗ δx�c

n
. Following analogous techniques

as the one used in ref. 27 Theorem 4.1 (or refs. 7, 26 if the interaction is
reduced to a pair interaction), we now prove that, for any T >0, X(n),x is
a Cauchy sequence in L1(C([0, T ], l1(γ ))).

Let r the range of ϕ and K >0 the supremum of a Lipschitz constant
for ∇j hj (uniform in j ) and a bound for supx |∇j hj (x)|. Let m<n and let
�◦

m denote the r-interior of �m defined by �◦
m ={j ∈�m :∀k with |k−j |�

r, k ∈�m}. So �◦
m ⊂�m ⊂�n.

For i ∈�◦
m,

|X(n),x
i (t)−X

(m),x
i (t)| = 1

2

∣∣∣∣
∫ t

0
∇ihi,�n(X

(n),x(s))−∇ihi,�m(X(m),x(s)) ds

∣∣∣∣

� K

2

∑

{j :|j−i|�r}

∫ t

0
|X(n),x

j (s)−X
(m),x
j (s)|ds

Thus,

E

(
sup
s�t

|X(n),x
i (s)−X

(m),x
i (s)|

)

� K

2

∑

{j :|j−i|�r}

∫ t

0
E

(
sup
u�s

|X(n),x
j (u)−X

(m),x
j (u)|

)
ds.
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For i ∈�m\�◦
m,

|X(n),x
i (t)−X

(m),x
i (t)|

= 1
2

∣∣∣∣
∫ t

0
∇ihi,�n(X

(n),x(s))−∇ihi,�m(X(m),x(s)) ds

∣∣∣∣

� K

2

∑

{j :|j−i|�r}∩�m

∫ t

0
|X(n),x

j (s)−X
(m),x
j (s)|ds

+1
2

∣∣∣∣∣∣∣∣∣

∫ t

0

∑

�′:�′ �⊂�m

�′⊂�n

∇iϕ�′(X(m),x(s))ds

∣∣∣∣∣∣∣∣∣

Thus,

E
(

sup
s�t

|X(n),x
i (s)−X

(m),x
i (s)|

)

� K

2

∑

{j :|j−i|�r}

∫ t

0
E
(

sup
r�s

|X(n),x
j (r)−X

(m),x
j (r)|

)
ds + K

2
t.

For i ∈�n\Lm, we have

|X(n),x
i (t)−X

(m),x
i (t)|=

∣∣∣Bi(t)− 1
2

∫ t

0
∇ihi,�n(X

(n),x(s)) ds

∣∣∣;

thus, using Doob inequality for Bi ,

E
(

sup
s�t

|X(n),x
i (s)−X

(m),x
i (s)|

)
�2

√
t + K

2
t.

For i ∈�c
n, |X(n),x

i (t)−X
(m),x
i (t)|≡0.

To obtain the desired Cauchy property, we apply the following infi-
nite-dimensional version of Gronwall’s Lemma (see for example ref. 25
Lemma 1, page 197). If for each i ∈Z

d , fi(t) satisfies

fi(t)�q ′
i +

∑

j∈Zd

qi,j

∫ t

0
fj (s)ds

with
∑

i∈Zd qi,j γi � Cγj for some constant C > 0 and any j ∈ Z
d , then

the following inequality holds in l1(γ ): ‖ f (t) ‖γ �‖ q ′ ‖γ eCt . Taking here
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fi(t)=E(sups�t |X(n),x
i (s)−X

(m),x
i (s)|), qi,j = K

2 1I|j−i|�r1I�m(i), q ′
i = (2

√
t +

k
2 t)1I�n\�◦

m
(i) and C = K

2 eαr#{k ∈Z
d , |k|� r} one obtains

E
(

sup
s�t

‖X(n),x(s)−X(m),x(s)‖γ

)
�
(

2
√

t + k

2
t
)( ∑

i∈�n\�◦
m

γi

)
expCt.

(12)

Since γ ∈ l1(Zd) the right hand side of this inequality goes to 0 when
n and m are large enough—uniformly in x—we conclude that X(n),x

converges in L1(C([0, T ], l1(γ ))) uniformly in x towards Xx .
Moreover, with similar computations as above, one obtains the

following Lipschitz regularity of Xx as a function of x:

∃C′ >0, E
(

sup
s�t

‖Xx(s)−Xy(s)‖γ

)
�‖x −y ‖γ eC′t .

Now, the law of the solution of (4) is just a mixture under ν of the
laws Qx . We may claim this since the support of ν is included in l1(γ ).

Let us now prove the local convergence of νt
�n,y towards νt . Let g be

a �-local Lipschitz function on R
Z

d
with Lipschitz constant Kg and fix

m<n large enough to have �⊂�m(⊂�n). We have

∣∣∣
∫

g(x�)νt (dx)−
∫

g(x�)νt
�n,y(dx�n)

∣∣∣

=
∣∣∣
∫

g(X�(t))Qν(dX)−
∫

g(X�(t))Q
ν�n,y

�n
(dX�n)

∣∣∣

=
∣∣∣
∫

RZd

∫
g(X�(t))Qx(dX)ν(dx)−

∫

R�n

∫
g(X�(t))Q

x�n

�n
(dX�n)ν�n,y(dx�n)

∣∣∣

�C1 +C2 +C3

where

C1 =
∫

RZd

∣∣∣
∫

g(X�(t))Qx(dX)−
∫

g(X�(t))Q
x�m

�m
(dX)

∣∣∣ ν(dx)

C2 =
∣∣∣
∫ ∫

g(X�(t))Q
x�m

�m
(dX)ν(dx)−

∫ ∫
g(X�(t))Q

x�m

�m
(dX)ν�n,y(dx�n)

∣∣∣

C3 =
∫

R�n

∣∣∣
∫

g(X�(t))Q
x�m

�m
(dX)−

∫
g(X�(t))Q

x�n

�n
(dX)

∣∣∣ ν�n,y(dx�n).
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With the above notations,

C1 =
∫

RZd
E|g(Xx

�(t))−g(X
(m),x
� (t))| ν(dx)

� Kg

∫

RZd
E|Xx

�(t)−X
(m),x
� (t)| ν(dx)

� Kg

∫

RZd
E
∑

i∈�

|Xx
i (t)−X

(m),x
i (t)| ν(dx)

� Kg

(
inf
i∈�

γi

)−1
∫

RZd
E
∑

i∈�

γi |Xx
i (t)−X

(m),x
i (t)| ν(dx)

� Kg

(
inf
i∈�

γi

)−1
∫

RZd
E(‖Xx(t)−X(m),x(t)‖γ ) ν(dx)

� c1




∑

i∈(�◦
m)c

γi



 ,

using (12) for the last inequality, where c1 >0 is a constant depending only
on t, ϕ, g, r,�, γ . In the same way, one has

C3 =
∫

R�n

E|g(X
(m),x
� (t))−g(X

(n),x
� (t))| ν�n,y(dx�n)

� Kg

∫

R�n

E|X(m),x
� (t)−X

(n),x
� (t)| ν�n,y(dx�n)

� Kg

(
inf
i∈�

γi

)−1
∫

E(‖X(m),x(t)−X(n),x(t)‖γ ) ν�n,y(dx�n)

� c1




∑

i∈(�◦
m)c

γi



 .

The second term is controlled in the following way:

C2 =
∣∣∣
∫

E(g(X
(m),x
� (t)))ν(dx)−

∫
E(g(X

(m),x
� (t)))ν�n,y(dx�n)

∣∣∣.

But, for m fixed, X
(m),x
� (t) and then E(g(X

(m),x
� (t))) are �m-local

functions in x depending continuously on x�m . So, thanks the local con-
vergence of the finite-volume specifications ν�n,y towards ν when n goes
to infinity, this term vanishes for m fixed and n going to infinity.

To complete the proof of the convergence of νt
�n,y towards νt it

remains now to take m large enough in such a way that (
∑

i∈(�◦
m)c γi) (and

thus C1 +C3) stays as small as necessary.
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To prove that νt is Gibbsian, we will use the fact that νt is abso-
lutely continuous with respect to νt,i , which itself is a consequence of the
absolute continuity of νt

�,y with respect to ν
t,i
�,y . Let us start with a nice

representation of this density
dνt

�,y

dν
t,i
�,y

.

Lemma 3. For each t >0, �⊂Z
d and any i ∈�,

dνt
�,y

dν
t,i
�,y

(x�)= e−h̃i (x�y�c )
E

Q
x�
�

(
ef�,y(X�(t))−f�,y(x�)

)

E
Q

x�
�,i

(
ef�\i,y (X�(t))−f�\i,y (x�)

) , (13)

where

f�,y(x)=h�,∅(x�)− h̃�,�c (x, y).

Proof. We have:

dνt
�,y

dν
t,i
�,y

(x�)=
dνt

�,y

dµ�

(x�)
dµ�

dµi
�

(x�)
dµi

�

dν
t,i
�,y

(x�).

Using the reversibility of Q
µ�

� (resp. Q
µi

�,i

� ) the first term of the right hand
side is obtained as follows: for any regular bounded local function g,

∫
g(x�)νt

�,y(dx�) =
∫

g((X�(t)))Q
ν�,y

� (dX)

=
∫ ∫

g((X�(t)))
dν�,y

dµ�

(X�(0))Q
µ�

� (dX)

=
∫ ∫

g((X�(0)))
dν�,y

dµ�

(X�(t))Q
µ�

� (dX)

=
∫

g(x�)

∫
dν�,y

dµ�

(X�(t))Q
x�

� (dX)µ�(dx�).

Then

dνt
�,y

dµ�

(x�)=E
Q

x�
�

(dν�,y

dµ�

(X�(t))
)
.
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Doing a similar computation for the decoupled dynamics one obtains

dνt
�,y

dν
t,i
�,y

(x�) = E
Q

x�
�

(
ef�,y(X�(t))

)
e−hi,�(x�)E

Q
x�
�,i

(
ef�\i,y (X�(t))

)−1

= e−hi,�(x�)+ϕi(xi )
ef

y
�(x�)

ef�\i,y (x�)

E
Q

x�
�

(
ef�,y(X�(t))−f�,y(x�)

)

E
Q

x�
�,i

(
ef�\i,y (X�(t))−f�\i,y (x�)

) ,

which is the same as the expression (13).
Let us first remark that, since ϕ̃ is of finite range, the expression

e−h̃i (x�y�
�c ) does not depend on y and on � for � large enough. We will

now prove, using cluster expansions, that the last ratio in (13) is a function
of x indexed by � which converges uniformly in y when � tends to Z

d .
Thanks to Girsanov theorem, the probability measures Q

x�

� and Q
x�

�,i

have a Gibbs representation on the path space C(R+,R)�, that is, if one
restricts them to the canonical filtration at any time t they have both an
explicit density with respect to the Wiener measure with deterministic initial
condition x�, denoted by ⊗i∈�ρxi . The density of Q

x�

� is the following:

F�(X�) = exp
∑

i∈�

(∫ t

0
− 1

2∇ihi,�(X�(s)) dXi(s)

−1
2

∫ t

0

1
4 (∇ihi,�)2(X�(s))ds

)
,

which becomes, using I to formula,

F�(X�) = exp
(

− 1
2h�,∅(X�(t))+ 1

2h�,∅(X�(0))

+
∑

i∈�

∫ t

0

(
1
4�ih�,∅ − 1

8 (∇ih�,∅)2
)
(X�(s))ds

)

= exp
(

−
∑

A⊂�

�A(X�)
)
, (14)

with

�A(X�) = 1
2ϕA(X�(t))− 1

2ϕA(X�(0))−
∫ t

0

(
1
4

∑

j∈A

�jϕA(X�(s))

−1
8

∑

B,C⊂A
B∪C=A
B∩C �=∅

∑

j∈B∩C

∇j ϕB(X�(s))∇j ϕC(X�(s))
)
ds. (15)
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The family �= (�A)A⊂Zd is an interaction potential on �; since ϕ is
of finite range (FR), � is of finite range too. Denoting by H the hamilto-
nian function associated to �, we then obtained that, for any �⊂Z

d and
i ∈�, on the events depending only on times between 0 and t ,

Q
x�

� (dX�)= e−H�,∅(X�) ⊗j∈� ρxj (dXj ). (16)

In the same way, one proves that

Q
x�

�,i(dX�)= e−H�\i,∅(X�\i ) ⊗j∈�\i ρxj (dXj ) ⊗ρxi (dXi). (17)

Let us describe some properties of the interaction potential �.

Lemma 4. There exists a constant C > 0 independent of the time t

such that for any X ∈� and any A⊂Z
d

|�A(X)| � C
(
t + sup

j∈A

|Xj(t)−Xj(0)|
)
.

Proof. It is clear, due to the equality (15) and the assumptions given
on ϕ.

We can now expand the terms E
Q

x�
�

(
ef�,y(X�(t))−f�,y(x�)

)
and E

Q
x�
�,i(

ef�\i,y (X�(t))−f�\i,y (x�)
)
. We give the detailed computations only for the

first expansion, since the second one is obtained in a similar way.

E
Q

x�
�

(
ef�,y(X�(t))−f�,y(x�)

)
=E⊗j∈� ρ

xj

(
exp

(
−
∑

A⊂�



y,�
A (X�)

))
(18)

where 
y,� is the following interaction potential on C([0, T ],R
)�:



y,�
A (X) = �A(X)−ϕA(X(t))+ϕA(X(0))

+
∑

B⊂Z
d

B∩�=A

(
ϕ̃B(X�(t)y�c)− ϕ̃B(X�(0)y�c)

)
. (19)

We also denote by 
 the interaction potential on C([0, T ],R)Z
d
:


A(X)=�A(X)−ϕA(X(t))+ϕA(X(0))+ (ϕ̃A(X(t))− ϕ̃A(X(0))) (20)
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and immediately remark that, as soon as � is large enough with respect
to the index set A, 


y,�
A ≡
A.

As in the Lemma 4, we obtain the following estimates for the inter-
actions 
y,� and 
.

Lemma 5. There exists a constant C > 0 independent of the time t

such that for any y ∈R
Z

d
,�⊂Z

d ,X ∈� and any A⊂�,

|
y,�
A (X)| � C

(
t + sup

j∈A

|Xj(t)−Xj(0)|
)

and

|
A(X)| � C
(
t + sup

j∈A

|Xj(t)−Xj(0)|
)
.

Proof. It is a direct consequence of Lemma 4 and the assumptions
given on ϕ and ϕ̃. The uniformity of the first upperbound with respect to
y and � is then clear.

Let us now introduce the main notations and tools we need for the
cluster representation. Let N ∈N large enough is such a way that for #A>

N,

y,�
A ≡ 0. Such a number N exists since 


y,�
A is of finite range uni-

formly in y and �. Let V be a finite subset of Z
d such that for any A⊂Z

d

with 

y,�
A �= 0 then A ⊂ ∩j∈A(V + j). (Such a set exists. For example if

ϕ and ϕ̃ are nearest neighbor pair potential interactions, then for #A >

3,

y,�
A ≡ 0 and one can take V = {i ∈ Z

d : |i| = 1 or i = 2j, |j | = 1 or i =
j +k, |j |=1, |k|=1}.)

Let us define a subclass of finite volumes in Z
d :

D =
{
A⊂Z

d : 1�#A�N and A⊂∩j∈A(V + j)

}
.

A finite set γ = {A1,A2, . . . ,An}, n � 1, of elements of D is a clus-
ter. It is called connected if for any Ai,Aj ∈ γ , there exists a sequence
i = i1, i2, . . . , im = j such that Ai1 ∩Ai2 �=∅, Ai2 ∩Ai3 �=∅, . . . , Aim−1 ∩Aim �=
∅. We call support of the cluster γ the subset of Z

d equal to
⋃n

l=1 Al

and denote it by supp(γ ). The integer number |γ | is the cardinality of the
support of γ .

We denote by A the set of connected clusters and A� the subset of
A which contains the clusters whose supports are included in �. A collec-
tion of clusters γ1, γ2, . . . , γn is called compatible if their associated sup-
ports are disjoint. We denote by L� the set of all compatible collections
of non-empty clusters belonging to A�.
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We can now start the expansion of the expression (18).

E
Q

x�
�

(
ef�,y(X�(t))−f�,y(x�)

)
=E⊗j∈�ρ

xj

( ∏

A⊂�

(
e−


y,�
A (X�) −1+1

))

=E⊗j∈�ρ
xj

(
1+

∞∑

n=1

∑

{γ1,...γn}∈L�

Ky,�(γ1)(X)Ky,�(γ2)(X) . . .Ky,�(γn)(X)

)
,

where

Ky,�(γ )(X) =
∏

A∈γ

(
e−


y,�
A (X�) −1

)

We then obtain the below cluster decomposition:

E
Q

x�
�

(
ef�,y(X�(t))−f�,y(x�)

)

=1+
∞∑

n=1

∑

{γ1,...γn}∈L�

K
y,�
x (γ1)K

y,�
x (γ2) . . .K

y,�
x (γn) (21)

where

K
y,�
x (γ ) = E⊗

j∈Zd ρ
xj

(
Ky,�(γ )(X)

)
.

In a similar way, we obtain for any i ∈�:

E
Q

x�
�,i

(
ef�\i,y (X�(t))−f�\i,y (x�)

)

=1+
∞∑

n=1

∑

{γ1,...γn}∈L�\i

K
y,�
x (γ1)K

y,�
x (γ2) . . .K

y,�
x (γn).

Let also define the coefficients related to the interaction 
 (instead of

y,�) by:

K(γ )(X)=
∏

A∈γ

(
e−
A(X) −1

)
, Kx(γ )=E⊗

j∈Zd ρ
xj (K(γ )). (22)

In the next lemma, we provide estimates for the weight of the clusters
(uniformly in x, y and �).
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Lemma 6. There exists some strictly positive constant λ(t) which
tends to 0 as t goes to 0 such that, for any x ∈R

Z
d
, any y ∈R

Z
d
, �⊂Z

d

and any γ ∈A

|Ky,�
x (γ )|�λ(t)|γ | and |Kx(γ )|�λ(t)|γ |.

Proof. We need to commute several times integration and products.
To this aim, the following abstract integration lemma, which generalizes
Hölder inequalities, is very useful. It is proved in ref. 23 Lemma 5.2:

Lemma 7. Let (µx)x∈X be a family of probability measures, each
one defined on a space Ex , where the elements x belong to some finite set
X . Let us also define a finite family (gk)k of functions on EX =×x∈X Ex

such that each gk is Xk-local for a certain Xk ⊂X , in the sense that

gk(e)=gk(eXk
) fore= (ex)x∈X ∈EX .

Let pk >1 be numbers satisfying the following conditions:

∀x ∈X ,
∑

Xk�x

1
pk

�1. (23)

Then

∣∣∣∣
∫

EX

∏

k

gk ⊗x∈X dµx

∣∣∣∣�
∏

k

(∫

EXk

|gk|pk ⊗x∈Xk
dµx

)1/pk

. (24)

Let γ ={A1,A2, . . . ,An}∈A; we apply Lemma 7 with X = supp(γ ), Xk =
Ak, gk = e

−

y,�
Ak − 1 and pk = p for all k, with p an even integer number

greater than N . Since
∑

Ak�j
1
pk

� N
p

�1, we get

|Ky,�
x (γ )| �

n∏

k=1

E⊗j∈Ak
ρ

xj

(
|e−


y,�
Ak −1|p

)1/p

.

Using the bound of Lemma 5, we obtain

|Ky,�
x (γ )| �

n∏

k=1

E⊗j∈Ak
ρ

xj

((
e
C(t+supj∈Ak

|Xj (t)−xj |) −1
)p)1/p

.
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Now, due to the existence of any exponential moment for the
N-dimensional Brownian motion,

E⊗j∈Ak
ρ

xj

((
e
C(t+supj∈Ak

|Xj (t)−xj |) −1
)p)1/p

�λ(t),

where the constant λ(t) tends to 0 as t goes to 0, uniformly in x and Ak ∈
D. One obtains the first desired upperbound:

|Ky,�
x (γ )|�λ(t)|γ |.

The second upperbound is then obvious.

One can then deduce from Lemma 6 the following upper bound: for
any cluster γ ∈A and for t small enough,

sup
x,y∈RZd

sup
�⊂Zd

∑

γ ′∈A:
supp(γ )∩supp(γ ′) �=∅

|Ky,�
x (γ ′)|e|γ ′| � |γ |. (25)

So, following Kotecký and Preiss (cf ref. 16 page 492), we can expand
for t small enough the logarithm of both, denominator and numerator of
the ratio in (13):

ln
(

E
Q

x�
�

(
ef�,y(X�(t))−f�,y(x�)

))

= ln
(

1+
∞∑

n=1

∑

{γ1,...γn}∈L�

K
y,�
x (γ1)K

y,�
x (γ2) . . .K

y,�
x (γn)

)

=
∞∑

n=1

∑

{γ1,... ,γn}∈M�

a(γ1, . . . , γn)K
y,�
x (γ1) . . .K

y,�
x (γn), (26)

and

ln
(

E
Q

x�
�,i

(
ef�\i,y (X�(t))−f�\i,y (x�)

))

= ln
(

1+
∞∑

n=1

∑

{γ1,...γn}∈L�\i

K
y,�
x (γ1)K

y,�
x (γ2) . . .K

y,�
x (γn)

)

=
∞∑

n=1

∑

{γ1,... ,γn}∈M�\i

a(γ1, . . . , γn)K
y,�
x (γ1) . . .K

y,�
x (γn), (27)
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where M� is the set of collections of clusters γ1, . . . , γn ∈ A� such that
their union is also in A�, that is the union is connected too, and the real
numbers a(γ1, . . . , γn) are coefficients coming from the Taylor expansion
of the logarithm function. The logarithm of the ratio is equal to the differ-
ence of the logarithms (26) and (27). It has then the following expansion
for t small:

∞∑

n=1

∑

{γ1,... ,γn}∈M�:
supp(∪j γj )�i

a(γ1, . . . , γn)K
y,�
x (γ1) . . .K

y,�
x (γn). (28)

Since the inequality (25) holds uniformly in x, y and �, following
ref. 16 (see also Ref. 1 or Ref. 21), we conclude that the series (28) con-
verges uniformly in x, y and �. Moreover, for any cluster γ , K

y,�
x (γ )

tends to Kx(γ ) as � goes to Z
d ; using Lebesgue dominated convergence

theorem, we conclude that
dνt

�,y

dν
t,i
�,y

(x�) converges uniformly in x, y towards

e−h̃i (x)eGi(x) where

Gi(x)=
∞∑

n=1

∑

{γ1,... ,γn}∈M
Zd :

supp(∪j γj )�i

a(γ1, . . . , γn)Kx(γ1) . . .Kx(γn). (29)

We are now able to complete the proof of Theorem 1.
From Lemma 2, for each regular local bounded function g from R

�

into R, we have

∫

RZd
g(x�) νt (dx) = lim

�→Zd

∫

RZd
g(x�) νt

�,y(dx�)

= lim
�→Zd

∫

RZd
g(x�)

dνt
�,y

dν
t,i
�,y

(x�) ν
t,i
�,y(dx�)

=
∫

RZd
g(x�)e−h̃i (x)+Gi(x)νt,i (dx).

Thus, on R
Z

d
, the probability measures νt (dx) and e−h̃i (x)+Gi(x)νt,i (dx)

coincide for each i ∈Z
d . Furthermore, since each ν

t,i
�,y is the law at time t of

a decoupled dynamics with decoupled initial condition, it is a product mea-
sure on R

�\i × R
{i} whose projection on the ith-coordinate is exactly the

Lebesgue measure. It implies that their infinite-volume limit νt,i is a prod-
uct measure on R

Z
d\i ×R

{i}, whose projection on the ith-coordinate is the
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Lebesgue measure too. Then, νt is a Gibbs measure associated to Lebesgue
measure as reference measure and to the interaction ϕt given by:

ϕt
A(x)= ϕ̃A(x)−

∞∑

n=1

∑

{γ1,... ,γn}∈MA
supp(∪j γj )=A

a(γ1, . . . , γn)Kx(γ1) . . .Kx(γn). (30)

This interaction potential is an explicit small perturbation of the initial
interaction ϕ̃. The proof of Theorem 1 is now completed in the case ν ∈
exG(ϕ̃, dx).

On the other hand, due to Lemma 1, ν can be represented as a
mixture ν = ∫

νθ m(dθ), where νθ are elements of exG(ϕ̃, dx). Therefore,
νt =Q

∫
νθ m(dθ) ◦X(t)−1 =∫ (Qνθ ◦X(t)−1)m(dθ)=∫ νt

θ m(dθ). Since we just
proved that νt

θ ∈G(ϕt , dx), this implies that νt ∈G(ϕt , dx) too.

Proof of Remark 1. It is done similarly as in ref. 26 page 71. For
any n � 1 and y ∈ R

Z
d

we first prove that
∫

R�n ‖x‖γ ν�n,y(dx) is bounded
uniformly in n and y. For i ∈�n, by integration by parts,

Z̃�n,y =
∫

R�n

exp(−h̃�n,Zd (x, y))dx�n

=
∫

xi∇i h̃�n,Zd (x, y) exp(−h̃�n,Zd (x, y))dx�n.

Thus
∫

xi∇i h̃�n,Zd (x, y) ν�n,y(dx�n)=1. But

xi∇i h̃�n,Zd (x, y) = xi∇i ϕ̃i (xi)+
∑

��i
#�>1

xi∇i ϕ̃�(x�ny�c
n
)

� a|xi |−b−
∑

��i
#�>1

|xi | ‖∇i ϕ̃�‖∞

� (a −
∑

��i
#�>1

‖∇i ϕ̃�‖∞)|xi |−b.

Thus, for some a′ > 0,
∫
(a′|xi | − b) ν�n,y(dx�n) � 1 which implies that

there exists a constant c > 0 independent of n and y such that∫ |xi | ν�n,y(dx�n)� c. This bound remains valid for the integral under ν,
and then

∫
‖x‖γ ν(dx)=

∫ ∑

i

|xi |e−α|i|ν(dx)� c
∑

i

e−α|i| <+∞.
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4. SMALL DYNAMICAL INTERACTIONS

Let us now consider infinite-dimensional gradient dynamics where the
dynamical interaction is small. Since the self-interaction does not need to
be small (on the contrary) we divide the dynamical interaction into two
parts as follows U +βϕ where U is the self-interaction and β >0 is a small
parameter. We then consider the following dynamics:

{
dXi(t)=dBi(t)− 1

2U ′(Xi(t)) dt − β
2 ∇ihi(X(t)) dt i ∈Z

d , t �0
X(0)�ν

(31)

This dynamics is a small perturbation of a free system, which is further-
more supposed to have nice ergodic properties, in such a way that its
behavior for large times is close to the stationary one.

The self potential U , supposed to be a C2-function, is called ultracon-
tractive if the semi-group associated to the one-dimensional free dynamics
dx(t) = dB(t) − 1

2U ′(x(t)) dt, where B is a real-valued Brownian motion,
is ultracontractive. We denote by m the unique initial distribution on R

which makes the process x(·) stationary; one has

m(dξ)= 1
Z

e−U(ξ) dξ, ξ ∈R.

Let us notice that there exists in the literature several types of conditions
which imply the ultracontractivity of U . Let us cite one set which is useful
(cf. Theorem 1.4 in ref. 15):

U ′′ − 1
2 (U ′)2 is bounded from above,

0< lim|ξ |→∞U ′′(ξ) and
∫ ∞ 1

U ′(ξ)
dξ <+∞.

A typical example of such self-potential is given by U(ξ)=|ξ |s+2 for some
s >0.

In the previous section, no particular assumption was given on the set
of Gibbs measures G(ϕ̃, dx), which contains the initial distribution ν. Thus
G(ϕ̃, dx) could be a singleton or it could have more than one element
(phase transition). In the contrary, in this section, to control the evolution
of the interaction at each time t we use techniques involving Dobrushin’s
uniqueness condition, and therefore, we should suppose that the initial
measure ν is the unique Gibbs measure associated to some interaction ϕ̃:
G(ϕ̃,m)={ν}.

Let us now introduce two definitions.
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We say that an interaction φ on R
Z

d
satisfies the strong Dobrushin’s

condition if it is absolutely summable and if the following inequality holds:

(SDC) sup
i∈Zd

∑

��i

(#�−1) sup
x,y∈R�

|φ�(x)−φ�(y)|<2.

In ref. 8 such an interaction is called a “high temperature interac-
tion”. It is well known that if an interaction φ satisfies (SDC), then it
satisfies the Dobrushin’s uniqueness condition which implies that G(φ,m)

contains at most one element (cf. for example ref. 13, Proposition (8.8)).
We can now state our result.

Theorem 2. Let Qν be the law on � of the infinite-dimensional
diffusion solution of (31) where ν ∈G(ϕ̃,m) with support included in l1(γ ),
with γ = (e−α|i|)i∈Zd , α >0. Let us moreover suppose that

(i) the self-potential U is ultracontractive,

(ii) the initial interaction ϕ̃ satisfies (SDC), and

(iii) the dynamical interaction ϕ is of finite range (FR), regular
bounded (RB) and satisfies the following assumption

sup
�⊂Zd

sup
i∈�

sup
x∈R�

|U ′(xi).∇iϕ�(x)|<+∞. (32)

Then, there exists β0 > 0 depending only on ϕ̃ and ϕ such that, for any
β �β0 and for all t �0,

νt =Qν ◦X(t)−1 ∈G(ϕt ,m)

where ϕt is an absolutely summable (AS) interaction.

Condition (32) is a balance condition between the self-potential U and the
dynamical potential ϕ. This is satisfied for example for any potential ϕ

which is constant at infinity.

Proof. Let us first remark that for ϕ̃ small enough, we could use
similar techniques as in the proof of Theorem 1, writing the cluster expan-
sion now no more with respect to the time but with respect to both small
parameters ‖ϕ̃‖∞ and β. But we want to obtain more than a perturbative
result around the free stationary case. Therefore, when ϕ̃ is not supposed
to be close to 0, we have to develop other techniques than before. To this
aim let us introduce some more notations.
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As in the last section, the infinite-dimensional dynamics (31) is
obtained as limit of the following finite dimensional dynamics: for � ⊂
Z

d , � finite,

dXi(t)=dBi(t)− 1
2
U ′(Xi(t)) dt − β

2
∇ihi,�(X(t)) dt, i ∈�, t �0.

(33)

For any x, y ∈R
Z

d
, �⊂Z

d and I = [a, b], we use the notations:

– Qν (resp. Qx): law on � of the solution of (31) with initial distri-
bution ν (resp. δx).

– Q
x�

� : law on C(R+,R)� of the solution of (33) with initial deter-
ministic condition x�.

– P x : law on �=C(R+,R)Z
d

of the solution of the free system ((31)
with β = 0) and initial condition x; it is the infinite product of the one-
dimensional free dynamics P

xi

i , each of one having at time t pt (xi, ·) as
density function with respect to m.

– P
x�

� : law on C(R+,R)� of the solution of (33) when β = 0 with
initial condition x�.

– P
x,y
�,I : law on C(I,R)� of the solution of (33) when β = 0 condi-

tioned to the initial and the final values : X�(a)=x� et X�(b)=y�

Step 1: Density of Q
x�

� ◦X(t)−1 with respect to P
x�

� ◦X(t)−1 on R
�

Our first aim is to obtain this density as an exponential function of
an uniformly convergent sum of interactions. By Girsanov theorem, Q

x�

�

restricted to the canonical filtration at time t is absolutely continuous with
respect to P

x�

� with density denoted by F�. Making similar computations
as in the proof of (14), one obtains

F�(X�) = exp
(

− 1
2
βh�,∅(X�(t))+ 1

2
βh�,∅(X�(0))

+
∑

i∈�

∫ t

0

(1
4
β�ih�,∅(X�(s))− 1

8
β2(∇ih�,∅)2(X�(s))

+1
4
βU ′(Xi(s))∇ih�,∅(X�(s))

)
ds

)
= exp

(
− 1

2
βh�,∅(X�(t))

+1
2
βh�,∅(X�(0))+

∫ t

0

∑

A⊂�

gA(X(s))ds
)
, (34)
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where for A⊂Z
d , gA is the following FA-measurable function on RZ

d

gA(x) = 1
4
β
∑

i∈A

(
�iϕA(xA)+U ′(xi)∇iϕA(xA)

)

−1
8
β2

∑

B,C⊂A
B∪C=A
B∩C �=∅

∑

i∈B∩C

∇iϕB(xB)∇iϕC(xC).

Moreover, due to the assumptions on ϕ and (32) there exists a constant
C̃ >0 such that

∀A⊂Z
d , ‖gA‖∞ � C̃β. (35)

From (34), one deduces that

Q
x�

� ◦X(t)−1

P
x�

� ◦X(t)−1
(y�) = e− 1

2 β(h�,∅(y�)−βh�,∅(x�))f�(x, y), (36)

with

f�(x, y) = EP
x,y

�,[0,t ]

[
exp

(∫ t

0

∑

A⊂�

gA(X(s))ds
)]

. (37)

We are now looking for a cluster representation of f�(x, y) for β small.

We first work at the space-time level as in ref. 3 or 22 (cf. also ref. 14
or ref. 20); Clusters are then subsets of Z

d ×N. In Step 2, we will project
this representation at times 0 and t , obtaining clusters in Z

d ×{0,1}.
Let us introduce the notations we need. Let N ∈ N large enough is

such a way that for #A > N,gA ≡ 0. Such a number N exists since gA is
of finite range by constrution.

Let V a finite subset of Z
d such that for any A⊂Z

d with gA �=0 then
A⊂∩j∈A(V + j).

Let us define a subclass of finite volumes in Z
d ×N:

D =
{

A =A×{j, j +1}⊂Z
d ×N : 1�#A�N and A⊂∩i∈A(V + i)

}
.

A finite set γ = {A1,A2, . . . ,An}, n � 1, of elements of D is a cluster.
It is called connected if for any Ai ,Aj ∈ γ , there exists a sequence
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i = i1, i2, . . . , im = j such that Ai1 ∩Ai2 �=∅, Ai2 ∩Ai3 �=∅, . . . , Aim−1 ∩Aim �=∅.
We call support of the cluster γ the subset of Z

d × N equal to
⋃n

l=1 Al

and denote it by supp(γ ). The integer number |γ | is the cardinality of the
support of γ .

We denote by A the set of connected clusters and A�×[0,M] the sub-
set of A which contains the clusters whose supports are included in �×
{0, · · · ,M} ⊂ Z

d × N. A collection of clusters γ1, γ2, . . . , γn is called com-
patible if their associated supports are disjoint. We denote by L�×[0,M]
the set of all compatible collections of non-empty clusters belonging to
A�×[0,M].

We can now start the expansion of the expression (37).
Let M be some integer which we will fix later, and T = t

M
. We

decompose the time interval [0, t ] into M subintervals Ij = [jT ; (j + 1)T ],
j =0, · · · ,M −1. We obtain, taking x0 =x,

f�(x, y) =
∫ ∫

. . .

∫ ∏

A⊂�

M−1∏

j=0

exp
(∫

Ij

gA(X(s))ds
)

×
M−2∏

j=0

∏

i∈�

pT (x
(j)
i , x

(j+1)
i )P

x,x(1)

�,I0
(dX)P

x(1),x(2)

�,I1
(dX) . . .

×P
x(M−1),y
�,IM−1

(dX)m⊗�(dx(1)) . . .m⊗�(dx(M−1)),

=
∫ ∫

. . .

∫ (
1+

∞∑

n=0

∑

{γ1,... ,γn}∈L�×[0,M]

KM(γ1)(X)

×KM(γ2)(X) . . .KM(γn)(X)

)
P

x,x(1)

�,I0
(dX)P

x(1),x(2)

�,I1
(dX) . . .

×P
x(M−1),y
�,IM−1

(dX)m⊗�(dx(1)) . . .m⊗�(dx(M−1)).

KM(γ ) has the following form:

KM(γ )(X) =
∏

{i}×{j,j+1}∈γ
j�M−2

(
pT

(
Xi

(
jT
)
,Xi

(
(j +1)T

))
exp

(∫

Ij

gi(X(s))ds
)

−1
)

×
∏

A×{j,j+1}∈γ
#A≥2

j�M−2

(
exp

(∫

Ij

gA(X(s))ds
)

−1
)

×
∏

A×{M−1,M}∈γ

(
exp

(∫

IM−1

gA(X(s))ds
)

−1
)

.
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We denote by ε(T ) the maximal fluctuation on [T ,+∞] of the kernel pt

around the equilibrium:

ε(T )= sup
t≥T

sup
a,b∈R

|pt (a, b)−1|. (38)

(Let us recall that by definition, pt is the density function with respect to
the stationary measure.)

Since U is ultracontractive, one has

lim
T →∞

ε(T )=0. (39)

Let us choose β <β0 with β0 satisfying
(
1+ε( 1

2
√

β0
)
)
eC̃

√
β0 −1�1. We con-

sider now both cases, β � 1
t2 and β > 1

t2 separately.
For β � 1

t2 (which implies tβ �
√

β) we fix the integer M equal to 1. So
T = t and we only have to control K1(γ ), which has the following simple
form:

∣∣∣K1(γ )(X)

∣∣∣ =
∣∣∣

∏

A×{0,1}∈γ

(
exp

(∫

[0,t ]
gA(X(s))ds

)
−1

)∣∣∣

�
(
eC̃tβ −1

) |γ |
2#V �

(
eC̃

√
β −1

) |γ |
2#V

. (40)

For β > 1
t2 we fix the integer M equal to [t

√
β] + 1, which is the smallest

integer strictly larger than t
√

β; so T = t

[t
√

β]+1
and satisfies 1

2
√

β
�T � 1√

β
.

We obtain

|KM(γ )(X)| �
((

1+ ε(T )
)
eC̃Tβ −1

) |γ |
2#V

�
((

1+ ε(
1

2
√

β
)
)
eC̃

√
β −1

) |γ |
2#V

. (41)

From (40) and (41) we deduce there exists a function λ(β) which is
independent of the time t and tends to 0 as β goes to 0 such that

|KM(γ )(X)|�λ(β)|γ |.
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Thus,

f�(x, y)=1+
∞∑

n=0

∑

{γ1,... ,γn}∈L�×[0,M]

Kx,y
M (γ1)K

x,y
M (γ2) . . .Kx,y

M (γn) (42)

where

Kx,y
M (γ ) =

∫
. . .

∫
KM(γ )(X)P

x,x(1)

�,I0
(dX) . . .

P
x(M−1),y
�,IM−1

(dX)m⊗�(dx(1)) . . .m⊗�(dx(M−1)),

and inserting (41) we obtain

sup
x,y,t

|Kx,y
M (γ )|�λ(β)|γ |.

As in the last section, this implies that for any cluster γ ∈ A and for β

small enough,

sup
x,y∈RZd

,t>0

∑

γ ′∈A:
supp(γ )∩supp(γ ′) �=∅

|Kx,y
M (γ ′)|e|γ ′| � |γ |.

For β small enough, following Kotecký and Preiss, one obtains the follow-
ing expansion for the logarithmus of f�(x, y):

ln
(

f�(x, y)
)

=
∞∑

n=0

∑

{γ1,... ,γn}∈M�×[0,M]

a(γ1, . . . , γn)K
x,y
M (γ1)K

x,y
M (γ2) . . .Kx,y

M (γn).

We now leave the space-time level and go to the level of the projections at
times 0 and t , obtaining :

ln
(

f�(x, y)
)

=
∑

�⊂�

∞∑

n=0

∑

{γ1,...γn}∈M�×[0,M]
Tr(γ1,... ,γn)=�

a(γ1, . . . , γn)K
x,y
M (γ1) . . .Kx,y

M (γn),

where Tr(γ1, . . . , γn) denotes the spatial trace of the cluster γ1, . . . , γn,
that is the projection of its support on Z

d .
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Thus from (36),

Qx
� ◦X(t)−1

P x
� ◦X(t)−1

(y�)= e−∑�⊂� �
β
�(x,y) (43)

where

�
β
�(x, y) = 1

2
β
(
ϕ�(y)−ϕ�(x)

)

−
∞∑

n=0

∑

{γ1,...γn}∈M�×[0,M]
Tr(γ1,... ,γn)=�

a(γ1, . . . , γn)K
x,y
M (γ1) . . .Kx,y

M (γn). (44)

We note some important properties of the function �β .

Lemma 8. The function �
β
�(x, y) defined on R

Z
d × R

Z
d

is indeed
F� ×F�-measurable and satisfies

lim
β→0

sup
i∈Zd

∑

��i

(#�−1)‖�β
�‖∞ =0.

Proof. The measurability property of �
β
� is a consequence of the

following observation: Kx,y
M (γ ) depend on x (resp. on y) only on supp(γ )∩

(Zd × {0}) ⊂ Tr(γ ) = � (resp. on supp(γ ) ∩ (Zd × {t}) ⊂ �, so that in fact
�

β
�(x, y)=�

β
�(x�, y�).

Moreover, Kotecký and Preiss proved in ref. 16 the following expo-
nential decrease of �

β
� with respect to �: For any a∈R, there exists βa >0

such that for all β �βa one has

sup
i∈Zd

sup
t∈R+

∑

��i

ea#�‖�β
�‖∞ �1. (45)

This implies that, uniformly in i and t , the sum
∑

��i (#� − 1)‖�β
�‖∞

converges for β small enough. Since limβ→0 ‖�β
�‖∞ = 0, we obtain the

desired result.

Step 2: Study of Qν = Qν ◦ (X(0),X(t))−1 on R
Z

d×{0,1} and its Gibbsian
properties

In order to prove the Gibbsianness of νt = Qν ◦ X(t)−1, we study as
intermediate step Qν = Qν ◦ (X(0),X(t))−1, the joint projection of Qν at
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time 0 and t on the space R
S , where S is the so-called bi-space: S =Z

d ×
{0,1}. (In the framework of Probabilistic Cellular Automata, the idea to
analyse the properties of the process on a bi-space was already powerful,
cf. ref. 28).

Lemma 9. For β sufficiently small Qν is a Gibbs measure on R
S

with reference measure m and associated Hamiltonian function H which
is defined as follows: if we denote by (�,�′) the subset of S equal to
(�×{0})∪ (�′ × {1}),

H(�,�′)(x, y)= h̃�(x)−
∑

i∈�∪�′
ln pt (xi, yi)+

∑

A⊂Z
d

A∩(�∪�′)�=∅

�
β
A(x, y). (46)

Proof. Since the initial interaction ϕ̃ satisfies the strong Dobrushin’s
condition (SDC), ν is the unique element in G(ϕ̃,m); it can be approx-
imated by the sequence of finite volume specifications with free bound-
ary conditions: (ν� = 1

z�
exp−h̃�,∅ m⊗�)�⊂Zd . Let Q

ν�

� be the law on
C(R+,R)� of the solution of (33) with initial distribution ν�. Similarly to
the proof of Lemma 2, for any bounded regular local functional G, the
sequence

∫
GdQ

ν�

� converges towards
∫

GdQν when � tends to Z
d . In

particular,

lim
�→Zd

∫
G(X(0),X(t)) dQ

ν�

� =
∫

G(X(0),X(t)) dQν,

which means that the joint projection of Q
ν�

� at times 0 and t on the space
(R2)� converges towards Qν , the joint projection of Qν at times 0 and t ,
considered as probability measure on (R2)Z

d
. Now, for β sufficiently small,

using Girsanov formula and (43), it is clear that the family (Q
ν�

� )� is the
Gibbsian specification on (R2)Z

d
with free boundary condition associated

to the reference measure on R
2 m(dξ, dζ ) = pt (ξ, ζ )m(dξ)m(dζ ) and the

interaction


�(x, y)= ϕ̃�(x)+�
β
�(x, y), (x, y)∈ (R2)Z

d

,�⊂Z
d .

(This function on (R2)Z
d

is indeed an interaction due to the measur-
ability property of �

β
� proved in Lemma 8). Since ϕ̃ satisfies the strong

Dobrushin’s condition (SDC) and, by Lemma 8,
∑

��i (#� − 1)‖�β
�‖∞

is as small as required for β small enough, the interaction 
 satisfies
also Condition (SDC) for β small. This implies in particular that the set
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G(
,m) of Gibbs measures on (R2)Z
d

contains at most one element; this
element is nothing but Qν , limit of the free boundary specifications (see
ref. 13 Example (4.20) for the relation between free boundary conditions
and usual boundary conditions.) The measure Qν thus satisfies (DLR)
equations with the Hamiltonian function associated to 
 and the refer-
ence measure m. If we now consider the natural bijection between (R2)Z

d

and R
S , Qν is a measure on R

S satisfying (DLR) equations for any finite
volume of the type (�,�)⊂S, with Hamiltonian function H(�,�) and ref-
erence measure m. This is enough to deduce the desired result, since any
finite volume (�,�′) ⊂ S can be included in some symmetrical volume
(�′′,�′′)⊂S.

We now condition the measure Qν to finite-dimensional projections
at time t . Let us denote by Qν,y�c the probability measure Qν(·|X�c(t)=
y�c), which is defined for any finite subset � of Z

d , and for νt -a.a. y. The
next lemma gives a Gibbsian description of this measure. Its simple proof
is omitted.

Lemma 10. The probability measure Qν,y�c , conditional law of
Qν ◦(X(0),X(t))−1 given {X�c(t)=y�c }, is a Gibbs measure on R

Z
d×{0}∪�×{1}

with reference measure m and Hamiltonian function Hy�c defined for
(�,�′)⊂Z

d ×� by

Hy�c

(�,�′)(x, z�)=H(�,�′)(x, z�y�c), x ∈R
Z

d

, z� ∈R
�.

Qν,y�c can be decoupled as follows:

Qν,y�c (dx, dz�)= 1
Z�(y�c)

∏

i∈�

pt (xi, zi)

× exp
(

−
∑

A⊂Z
d

A∩��=∅

�
β
A(x, z�y�c)

)
m⊗�(dz�)Q̄ν,y�c (dx), (47)

where Q̄ν,y�c is a probability measure on R
Z

d
. Furthermore, Q̄ν,y�c belongs

to G(�̄y�c ,m) where the interaction �̄y�c is defined for x ∈R
Z

d
by:

{
�̄

y�c

i (x)= ϕ̃i (xi)−1Ii∈�c ln pt (xi, yi), i ∈Z
d

�̄
y�c

� (x)= ϕ̃�(x)+1I�∩�=∅ �
β
�(x, y�c), for �⊂Z

d ,#��2.
(48)

In the next lemma we show that uniformly (with respect to � and y) the
local specifications of Q̄ν,y�c converge to this Gibbs measure.
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Lemma 11. For β sufficiently small and t >0, for �⊂Z
d and for all

y ∈R
Z

d
, the set G(�̄y�c ,m) contains a unique element denoted by Q̄ν,y�c .

Moreover, for any �⊂Z
d ,

lim
�′↗Zd

sup
A∈F�

sup
�⊂Zd

sup
y∈RZd

sup
x∈RZd

∣∣∣Q̄ν,y�c (A)− Q̄ν,y�c (A|x�′c )
∣∣∣=0. (49)

Proof. Considering the form of the interaction potential �̄y�c given
in (48), it is obvious, as in the proof of Lemma 9, that for β sufficiently
small, �̄y�c satisfies (SDC). Therefore the set G(�̄y�c ,m) contains at most
one element. The strong convergence of the local specifications to the lim-
iting Gibbs measure is a classical result, which is proved for example in
ref. 13, Theorem 8.23. The uniformity in � and y in (49) comes from the
same uniformity obtained in the (SDC).

Remark 2. Since Q̄ν,y�c is well defined for any y ∈ R
Z

d
, Qν,y�c is

also defined by (47) not only for νt -a.a. y but for all y. This is a regu-
lar version of the conditional probabilities Qν(dx dy|y�c).

We now observe that, for a.a. y�c ∈R
�c

, νt (·|y�c) is the marginal on R
Z

d

of Qν,y�c . This means that, for any regular bounded function g on R
�,

∫
g(z�)νt (dz�|y�c)=

∫
g(z�)Qν,y�c (dx, dz�).

From Lemma 10 and Lemma 11, we obtain the existence of a regular
density f� for the conditional probabilities νt (·|y�c):

νt (dz�|y�c)=f�(z�y�c)m⊗�(dz�),

with

f�(y)=
∫

RZd

1
Z�(y�c)

∏

i∈�

pt (xi, yi) exp



−
∑

A⊂Z
d

A∩��=∅

�
β
A(x, y)



 Q̄ν,y�c (dx).

(50)

Let us remark that f� is well defined on the full space R
Z

d
.
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Step 3: Use of Kozlov representation theorem
To complete the proof of Theorem 2, it is enough to show that the

local densities f�—expressed in (50)—of the family of conditional proba-
bilities νt (·|F�c) are built on an absolutely summable interaction potential.
Unfortunately, in this context, we cannot write explicitly the interaction as
we did in the Section 3. We will only prove its existence and regularity,
using the pioneering work of Kozlov. In ref. 17, Theorem 1, he proved the
existence of an absolutely summable interaction under the assumption that
for any �⊂Z

d , f� satisfies the following properties:

(boundedness) ∃C1,C2 >0 such that C1 � inf
y∈RZd

f�(y)� sup
y∈RZd

f�(y)�C2,

(quasilocality) lim
�↗Zd

sup
y,ỹ∈R

Z
d

y�=ỹ�

|f�(y)−f�(ỹ)|=0.

The first condition is equivalent to the uniform boundedness of ln(f�)

and the second one is the uniform quasilocality.
Proof of the boundedness of f�: Since, from Lemma 10, Q̄ν,y�c is a Gibbs
measure with associated interaction �̄y�c , one can desintegrate it on F�

and obtains

f�(y)=
∫

f̄�(x�c , y) Q̄ν,y�c (dx) (51)

where

f̄�(x�c , y) =
∫

R�

1
Z�(y�c)z̃�(x�c)

∏

i∈�

pt (xi, yi)

exp
(

− h̃�(x)−
∑

A⊂Z
d

A∩��=∅

�
β
A(x, y)

)
m⊗�(dx�),

with

z̃�(x�c) =
∫

exp(−h̃�(x))m⊗�(dx�),

and

Z�(y�c) =
∫ ∏

i∈�

pt (xi, yi) exp
(

−
∑

A⊂Z
d

A∩��=∅

�
β
A(x, y)

)
m⊗�(dy�)Q̄ν,y�c (dx).
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By assumption, the initial Hamiltonian h̃ is uniformly bounded; then there
exists c1 >0 and c2 >0 such that

∀x ∈R
Z

d

, c1 � 1
z̃�(x�c)

exp(−h̃�(x))� c2.

On the other hand, from Lemma 8, it is clear that for β small enough,
there exists c3 >0 and c4 >0 such that

∀x, y ∈R
Z

d

, c3 � exp(−
∑

A⊂Z
d

A∩��=∅

(
�

β
A(x, y)

)
� c4.

Then, for any y�c ∈R
�c

,

c3
∫ ∏

i∈�

pt (xi, yi)m
⊗�(dy�)Q̄ν,y�c (dx)�Z�(y�c)

� c4

∫ ∏

i∈�

pt (xi, yi)m
⊗�(dy�)Q̄ν,y�c (dx).

Since, for any i ∈ Z
d and xi ∈ R,

∫
pt (xi, yi)m(dyi) = 1, we obtain c3 �

Z�(y�c)� c4.
This bound implies that, for all y ∈R

Z
d
,

c1c3

c4
�f�(y)� c2c4

c3
.

Proof of the quasilocality of f�: Above, we have shown that the function
f̄� defined on R

�c ×R
Z

d
is uniformly bounded. Furthermore, it satisfies

lim
�↗Zd

sup
y,ỹ∈R

Z
d

y�=ỹ�

sup
x∈RZd

|f̄�(x�c , y)− f̄�(x�c , ỹ)|=0.

Using the integral representation (51) and (49), one obtains that f� itself
is quasilocal.

Remark 3. If we remove the ultracontractivity assumption on the
self potential U , the result of Theorem 2 remains valid, that is for any
fixed t , νt is strong Gibbsian for β � β0, but now the critical value β0
depends on t .
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5. COROLLARIES AND ADDITIONAL REMARKS

We proved in the previous sections results on propagation of Gibb-
sianness. In this last section, we are interested by the propagation of other
properties. Does the Strong Dobrushin condition, or the uniqueness of
Gibbs measures, or the phase transition property propagate between time
0 and time t?
We begin with a direct corollary of Theorem 1.

Corollary 3. Let us consider the system (4) under the assumptions
of Theorem 1. If the initial interaction ϕ̃ satisfies (SDC), then for t small
enough, the interaction ϕt at time t satisfies (SDC) too.

Proof. The representation (30) shows that ϕt is a perturbation of ϕ̃.
Similarly as in Lemma 8, we obtain that for t small enough ϕt satisfies
(SDC).

In the case of free systems, we can even say something for times t not
necessarily small. Let us define the following decoupled dynamics:

{
dXi(t)=dBi(t)− 1

2U ′(Xi(t)) dt, i ∈Z
d , t �0

X(0)�ν
(52)

where ν is a Gibbs measure in G(ϕ̃,m); U is supposed to be C2 and the
measure e−Udξ can be normalised into m(dξ)= 1

Z
e−U(ξ)dξ .

Proposition 4. If we consider the free system (52) where the initial
interaction ϕ̃ satisfies (SDC), then for any time t � 0, the set G(ϕt ,m) is
reduced to the unique Gibbs measure equal to the law of X(t).
Moreover, if the dynamical self interaction U is ultracontractive, then for
t large enough, the interaction at time t ϕt satisfies Dobrushin uniqueness
criterium.

Proof. Let µ be a Gibbs measure in G(ϕt ,m). Suppose that µ is ex-
tremal; then, as recalled in Lemma 1, µ is the weak limit of its local specifi-
cations, that is: there exists y in R

Z
d

such that µ= lim�↗Zd f�(·y�c)m⊗� ⊗
δy�c , with f� defined in (50). But the expression (50) is now much simpler
than in Section 4 since the system is free (β = 0). In this special case, the
local specification f� of νt in � has the following simple expression:

f�(y)=
∫ ∏

i∈�

pt (xi, yi)Q̄
ν,y�c (dx). (53)
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So, for all �⊂Z
d and all bounded regular F�-measurable function g, we

have
∫

g(z�)µ(dz) = lim
�↗Zd

∫
g(z�)

∫ ∏

i∈�

pt (xi, zi)Q̄
ν,y�c (dx)m⊗�(dz�)

= lim
�↗Zd

∫ ∫
g(z�)

∏

i∈�

pt (xi, zi)m⊗�(dz�) Q̄ν,y�c (dx),

since for every i ∈�\�,
∫

pt (xi, zi)m(dzi)=1.
On the other hand, Lemma 11, which holds for � = Z

d too, shows
the weak convergence of Q̄ν,y�c against Q̄ν,∅, which is equal to ν when
β = 0. Since the function x �→ ∫

g(z�)
∏

i∈� pt (xi, zi)m
�(dy�) is bounded

and local, we then get

∫
g(z�)µ(dz) =

∫ ∫
g(z�)

∏

i∈�

pt (xi, zi)m
⊗�(dz�)ν(dx).

The preceding equality shows that locally, µ is nothing but the mea-
sure ν transported by the free dynamics. Thus, µ does not depend on the
boundary condition y. This proves the uniqueness of the extremal Gibbs
measures in G(ϕt ,m). Thus the set of Gibbs measures is reduced to one
element too. The first part of the proposition is proved.

We now prove the second assertion. For fixed t >0, one can define as
usually Dobrushin’s coefficients (C

(t)
i,j )i,j∈Zd associated to the interaction ϕt

by:

C
(t)
i,j = sup{‖νt (dyi |yZd\i )−νt (dyi |ỹZd\i )‖var :y, ỹ ∈R

Z
d

, yZd\j = ỹZd\j }
= 1

2
sup{

∫
|fi(y)−fi(ỹ)|m(dyi) : y, ỹ ∈R

Z
d

, yZd\j = ỹZd\j }

with, as in (53), fi(y) = f{i}(y) = ∫
pt (xi, yi)Q̄

ν,y
Zd \i (dx). To simplify, the

Dobrushin’s coefficients of ϕ̃ (time 0) are denoted by (Ci,j )i,j∈Zd .
The potentiel ϕt satisfies the Dobrushin Uniqueness Criterion if

(DUC) C(t) := sup
i∈Zd

∑

j∈Zd

C
(t)
i,j <1.

Since ϕ̃ satisfies (SDC), it’s well known (see for example Proposition 8.8 in
ref. 13) that ϕ̃ satisfies (DUC) too, that is C := supi∈Zd

∑
j∈Zd Ci,j <1. Let

us prove that ϕt also satisfies (DUC) for t large enough. From Lemma 10,
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Q̄
ν,y

Zd \i and Q̄
ν,ỹ

Zd \i are Gibbs measures. Using the comparison Theorem
8.20 in ref. 13 which gives bounds for the integral of a function under
different Gibbs measures, one obtains

|fi(y)−fi(ỹ)| � 2ε(t)Di,j

∫
‖Q̄ν,y

Zd \i (dxj |xZd\j )− Q̄
ν,ỹ

Zd \i (dxj |xZd\j )‖var

Q̄
ν,y

Zd \i (dx) � 2ε(t)Di,j

1
2

∫ ∫
e−h̃j (x)

∣∣∣∣
pt (xj , yj )

zj (x, yj )
− pt (xj , ỹj )

zj (x, ỹj )

∣∣∣∣

×m(dxj ) Q̄
ν,y

Zd \i (dx),

where ε(t) is defined in (38), Di,j is the (i, j)-coefficient of the infinite-
dimensional matrix D=∑n∈N

Cn (C is the matrix (Ci,j )i,j∈Zd ) and

zj (x, yj )=
∫

e−h̃j (x)pt (xj , yj )m(dxj ).

If we denote by zj (x)=∫ e−h̃j (x)m(dxj ) we then obtain following inequal-
ities:

(1− ε(t))zj (x)� zj (x, yj )� (1+ ε(t))zj (x), (54)

|zj (x, yj )− zj (x, ỹj )|�2ε(t)zj (x). (55)

Thus,

|fi(y)−fi(ỹ)|� ε(t)Di,j (A+B),

with

A=
∫ ∫

e−hj (x) 1
zj (x, yj )

∣∣pt (xj , yj )−pt (xj , ỹj )
∣∣m(dxj ) Q̄

ν,y
Zd \i (dx),

and

B =
∫ ∫

e−hj (x)pt (xj , ỹj )

∣∣∣∣
1

zj (x, yj )
− 1

zj (x, ỹj )

∣∣∣∣m(dxj ) Q̄
ν,y

Zd \i (dx).
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Using inequalities (54) and (55) we obtain

A � 2ε(t)

∫ ∫
e−hj (x)

zj (x, yj )
m(dxj )Q̄

ν,y
Zd \i (dx)

� 2ε(t)

1− ε(t)

∫ ∫
e−hj (x)

zj (x)
m(dxj ) Q̄

ν,y
Zd \i (dx)

� 2ε(t)

1− ε(t)
.

(For t large enough, 1− ε(t) is greater than 0.)
On the other hand,

B �
∫ ∫

e−hj (x)

zj (x, ỹj )
pt (xj , ỹj )

∣∣zj (x, ỹj )− zj (x, yj )
∣∣

zj (x, yj )
m(dxj ) Q̄

ν,y
Zd \i (dx)

�
∫ ∫

e−hj (x)

zj (x, ỹj )
pt (xj , ỹj )

2ε(t)

1− ε(t)
m(dxj ) Q̄

ν,y
Zd \i (dx)

� 2ε(t)

1− ε(t)
.

Finally, we obtain the uniform bound |fi(y)−fi(ỹ)|� 4ε(t)2

1−ε(t)
Di,j . Thus, for

all i ∈N,

C(t) � 2ε(t)2

1− ε(t)

∑

j∈N

Di,j � 2ε(t)2

1− ε(t)

1
1−C

.

Since ε(t) vanishes when t goes to infinity, C(t) is strictly lower than 1 for
t large enough.

Let us go back to the general system (31), with a true interaction in
the dynamics. We know that for small times the set G(ϕt ,m) contains a
unique Gibbs measure. But it is not clear whether this property remains
true for any time. What we prove in the following proposition, is that it is
at least true for t large enough. Unfortunately, unlike the preceding Prop-
osition, we do not know if the potential ϕt satisfies the uniqueness criteria
(DUC) or (SDC).

Proposition 5. Under the assumptions of Theorem 2, for β small
enough and t large enough, the set G(ϕt ,m) contains a unique Gibbs mea-
sure, the law at time t of the solution of (31).
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Proof. For β small enough, the interaction potential on R
S associ-

ated to the Hamiltonian function H defined in (46) is the sum of the initial
potential plus a two-body potential induced by pt and a dynamical potential
defined by the cluster expansion. By assumption, the first one satifies (SDC);
the second one vanishes when t goes to infinity, since U is ultracontractive
and the third one is small in the sense of Lemma 8. So, for β small enough
and t large enough, the potential associated to H satisfies (SDC) on the
bi-space S. Thus, the specifications of H are global in the sense defined in
ref. 11 (see also refs. 12 and 13). This means that (DLR)-equations hold also
true for unbounded subsets of S. Similarly to the beginning of the proof of
Proposition 4, we can show that each extremal measure in G(ϕt ,m) is the
limit of the projections on R

Z
d×{1} of the global specifications associated to

H for a fixed boundary condition y. The uniqueness of such extremal Gibbs
measures is then a consequence of the globality property. We conclude that
G(ϕt ,m) is reduced to the measure νt .

Let us finish this section with a result about propagation of non-
uniqueness.

Proposition 6. Let us consider the system (4) under the assump-
tions of Theorem 1. If #G(ϕ̃, dx) > 1 (phase transition occurs at time 0)
then, for t small enough #G(ϕt , dx) > 1 too, that is the phase transition
propagates.

Proof. Suppose #G(ϕ̃, dx) > 1; let ν1 and ν2 be two distinct mea-
sures in G(ϕ̃, dx). Thanks to Theorem 1, for t small enough, νt

1 and νt
2 are

in the same set of Gibbs measures G(ϕt , dx). It is clear that νt
1 (respec-

tively νt
2) converges weakly to ν1 (respectively to ν2) when t goes to 0.

Thus, for t small enough νt
1 and νt

2 are different measures.

ACKNOWLEDGMENTS

The authors thank A.C.D. van Enter, A. Le Ny and F. Redig for the
very interesting workshop they organized at Eurandom, where the results
of this paper were presented for the first time. They also thank R. Fer-
nandez, F. den Hollander and F. Redig for fruitful discussions. During the
completion of this work the first author benefited from the financial sup-
port of DAAD (Kurzstipendium A/03/02945) and from the hospitality of
Potsdam University. Both institutions are here gratefully acknowledged.

REFERENCES

1. A. Bovier and M. Zahradnik, A simple inductive approach to the problem of conver-
gence of cluster expansions of polymer models, J. Stat. Phys. 100:765–778 (2000).



550 Dereudre and Rœlly

2. P. Cattiaux, S. Rœlly, and H. Zessin, Une approche Gibbsienne des diffusions Browni-
ennes infini-dimensionnelles, Probab. Th. Rel. Fields 104:147–179 (1996).

3. P. Dai Pra and S. Rœlly, An existence result for infinite-dimensional Brownian diffusions
with non-regular and non-Markovian drift, Markov Proc. Rel. Fields 10:113–136 (2004).

4. D. Dereudre and S. Rœlly, On Gibbsianness of infinite-dimensional diffusions, Proceed-
ings Conference Eurandom Gibbs versus non-Gibbs, Markov Proc. Rel. Fields 10:395–410
(2004).

5. J. D. Deuschel, Non-linear smoothing of infinite-dimensional diffusion processes, Stoch-
astics 19:237–261 (1986).

6. J. D. Deuschel, Infinite-dimensional diffusion processes as Gibbs measures on C[0,1]Z
d
,

Probab. Th. Rel. Fields 76:325–340 (1987).
7. H. Doss and G. Royer, Processus de diffusion associé aux mesures de Gibbs, Z. Wahrsch.
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16. R. Kotecký and D. Preiss, Cluster expansions for abstract polymer models, Commun.

Math. Phys. 103:491–498 (1986).
17. O. K. Kozlov, Gibbs description of a system of random variables, Probl. Info. Trans.

10:258–265 (1974).
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Math. France, Paris 1999).

27. T. Shiga and A. Shimizu, Infinite dimensional stochastic differential equations and their
applications, J. Math. Kyoto Univ. 20(3):395–416 (1980).

28. A. L. Toom, N. B. Vasilyev, O. N. Stavskaya, L. G. Mityushin, G.L. Kurdyumov, and
S. A. Pirogov, Locally Interactive Systems and their Application in Biology, L.N. in Math.
653 (Springer, 1978).


